无人车致命车祸,人车谁来背锅?MIT问了2583个人给出了这份政策研究
让我们先来做一道选择题。
司机老王开着一辆带有自动驾驶系统的车,这时道路前方突然出现了一个行人,可怕的是刹车失灵了。如果及时左转,老王的车就不会撞人;如果依旧直行,老王的车会将人撞死。
![]() |
老王决定左转,而自动驾驶系统强制选择了直行(撞人)
老王决定直行(撞人),而自动驾驶系统没有干预
自动驾驶系统决定左转,而老王强制选择了直行(撞人)
自动驾驶系统决定直行(撞人),而老王没有干预
A和C选项中,人类和机器驾驶员都进行了错误干预。B和D选项中,两者都没有进行有效干预(错过干预)。到底谁的责任更大?
为无人车事故定责不是个简单的选择题。
MIT、哈佛、加州大学尔湾分校、法国图卢兹大学的一个联合研究小组,致力于通过定量研究的手段,了解人们在面对无人车事故时的态度,并于最近发布了研究成果。
![]() |
论文作者来自脑和认知科学、心理学、经济学等多个不同领域,MIT火爆的无人车课程讲师Sydney Levine也是作者之一。
先说MIT联合研究小组通过向2583个人发放3次调查问卷得出的结论:
进行了错误干预的驾驶者是过失方,无论是人还是机器驾驶;
如果人机同时错过有效干预,舆论对机器更包容,人类司机的疏忽更受关注。
明确事故定责,是无人车发展的前提
伴随着一个个无人车路测的消息,我们也看到了一起起事故。
3月18日美国亚利桑那州发生的Uber无人车撞伤行人并致死事故可以理解为“错过干预”。车祸正式报告还未公布,但据外媒报道,事故发生时车辆已经检测到车头前的行人,但决策系统却“决定”不采取任何闪避措施,同时人类安全驾驶员也未能及时作出反应。
Uber之后,3月23日,特斯拉Autopilot再次成为漩涡中心:一辆开启了Autopilot的Model X在高速上撞向隔离带,导致车主不幸丧生,还引发车辆起火和两车追尾。
![]() |
同样,可以理解为“错过干预”。
历史总是惊人地相似。
2016年5月,全球首例引起广泛关注的Autopilot致死事故在佛罗里达发生,一辆特斯拉Model S在使用Autopilot模式行驶途中与一辆正在转弯的卡车相撞,导致特斯拉车主死亡。[page]分页标题[/page]
![]() |
也就是说,在这场事故中,无论是机器驾驶员还是人类驾驶员都应该采取措施(避开正在左转的卡车),然而他们并没有采取行动。
人类和机器驾驶员的“错过干预”导致了撞车事故。美国高速公路安全管理局等部门在经过6个月的调查后,认定特斯拉Autopilot系统不存在缺陷。
据世界卫生组织统计,全球每年约有125万人死于车祸。通常,法律裁决的重点是判定谁是过失方,谁为事故承担责任。
随着半自动驾驶和全自动驾驶技术趋于成熟,如何公正判决谁应该承担责任就成了法官和陪审团的难题,因为事故中的过失和责任将由人类和机器驾驶员共同承担。
法官和陪审团都是人类。
他们会偏袒自己的同胞吗?还是认为人类因为智力更胜一筹所以应当承担更多责任?
在2016年的特斯拉Autopilot事故中,公众明显偏向于指责事故中疏忽的人类驾驶员,比如有传闻说车主当时正在看哈利·波特电影(尽管没有任何证据证实这点)。
![]() |
目前,公众对混合驾驶模式造成的车祸态度仍不明确,制造商也无法判断他们的责任范围,这直接反映在了无人车高昂的定价上,也减缓了无人车普及的速度。如果公众倾向于将责任归咎于人类驾驶员而不是机器,这将导致法律体系建设的放缓和监管的缺失,也无法给制造商施加足够的压力来提升无人车安全性。
MIT联合研究小组呼吁,为事故明确定责,是完善监管、促进自动驾驶行业发展的第一步。
有司机的无人车,司机责任更大?
目前,自动驾驶技术以混合驾驶模式为主。一些自动驾驶系统可以越过司机的权限执行紧急操作(例如丰田的Guardian Angel)。其他半自动驾驶车辆可以完成大部分驾驶操作,同时要求司机不断监控情况并随时准备采取控制措施(例如特斯拉的Autopilot)。
这里,核心问题是:当一辆半自动驾驶的汽车发生事故并造成人员伤亡时,如何判定人类和机器驾驶员之间的过失和因果责任?
让我们详细看看MIT联合研究小组的结论。
![]() |
焦点在于H-M和M-H模式下的两个场景:
主驾驶做出正确判断,而副驾驶错误干预(“错误干预”)
主驾驶做出错误判断,而副驾驶没有进行干预(“错过干预”)
研究人员使用了两个自变量做回归:驾驶员是否犯错、驾驶员类型(人或机器)。
在“错误干预”场景下,最重要的发现是:驾驶员是否犯错对评分具有显著影响,而驾驶员类型对结果的影响并不明显。可以从下图左边看到,做出错误干预的副驾驶被认为过失更大,而且副驾驶是蓝色(机器)或红色(人类)的情况下过失及责任分数接近。
也就是说,人们普遍认为,做出错误判断的一方是过失方。如果“错误干预”的驾驶操作导致行人死亡,那么无论做出误判的是人还是机器,都应当承担更多责任。
![]() |
而有关“错过干预”的研究结果和此前的结果不同。
此前的研究表明,当机器和人类都做出错误的判断时,机器会受到更多的指责。而且,当人和算法犯了同样的错误时,人们对算法失去信任的速度要快于人类本身。
这次的结论是,如果发生“错过干预”的情况(即人类犯错机器没有干预,或者机器犯错人类没有干预),机器责任程度明显小于人类。
在双驾驶员模式下,人类和机器驾驶员都承担责任(缺乏有效干预),但是可以明显看出红蓝两色的差距。作为对照,如果主驾驶和副驾驶都是人类或者都是机器,他们的责任分数相同(对应上图右第2行及第7行)。
具体回归结果可以看这张图:
![]() |
尽管人们对无人车的普及可能存在着许多心理上的障碍,但这一结果表明,公众不会对混合驾驶模式下的事故做出过度反应。
尽管在研究中进行了一些系统的简化,但结果也能反映出一定的公众言论效应。公众倾向于将注意力集中在人类驾驶员的极度疏忽上,因此将责任归咎于人类驾驶员而不是机器。
受访者也对人类和机器驾驶员的能力分别做了评估,结果相近。在了解事故前,受访者对人类和机器的驾驶能力同样有信心。在被告知发生了“错过干预”的事故后,信心同比例下降。
![]() |
事实上,更应该关心的也许是公众的反应不足(under-reaction)。
研究人员认为,公众的反应不足会导致驱动监管法案制定的舆论压力缺失。如果半自动驾驶汽车的监管法案在有陪审团的法庭上制定,陪审团的裁决会偏向于汽车制造商,[page]分页标题[/page]使其在人机共同犯错的案例中免责。这样的话,就无法给制造商施加足够的压力来改善汽车的安全性能设计。
其实,我们之前也经历过类似的情况。在20世纪60年代之前,汽车制造商将伤害事故责任归咎于驾驶员的错误或疏忽,从而逍遥法外。为此,很有必要通过自上而下的监管,将“事故责任制”的概念引入法律体系,即汽车的设计应尽可能减少发生事故时对乘客造成的伤害。
只有在法律约束下,汽车制造商才能被迫改进他们的设计。然而,安全的标准究竟如何,仍然是一个悬而未决的问题。
![]() |
机器做出了“错误干预”。
在这种驾驶模式中,人类并没有义务去纠正机器犯的错误。也就是说,机器的工作是纠正人类可能犯下的错误,但如果机器犯了错误,人类没有纠正的义务。(仅在“H-M”模式下如此。“M-H”模式下,当机器发生故障时,纠正故障始终是人类的责任。)
因此,一旦发生由“错误干预”造成的事故,可能会引起公众的广泛关注。如果我们对此不加以适当的预测和管理,那么全自动驾驶技术的进程可能会减缓。在研发机器比人类具有更大权限的汽车时,制造商们应该关注这类极端情况,因为在该情况下,机器比人类更易受到指责。
公众反应和舆论压力会影响判决和立法,也会影响个体的决策。
比如,人们可能会选择“能承担事故责任和舆论压力”的驾驶系统。更糟糕的是,人们可能会改变驾驶习惯,尽量让机器成为过失方(比如说,不去纠正机器的“错误干预”)。
毕竟,如果什么都不做,可以让机器背锅。
One More Thing
如果你对社会实验感兴趣,这里还有一个MIT开发的小游戏,你可以自己试试看在两难时你会怎么操控无人车:
http://moralmachine.mit.edu/
![]() |
【今日机器学习概念】
Have a Great Definition
![]() |
本文首发于微信公众号:大数据文摘。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。

- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41

- 17:41南京先进制造产业专项母基金公布子基金遴选结果
- 17:20五力赋能 破浪笃行——东方药林第十一届初级晋级训练营圆满落幕
- 11:24未来更「耀」在一起 —— 2026康力燃梦启新年度盛典璀璨收官!
- 09:48南京市创投集团直投企业贝耐特完成数千万元融资
- 11:32金海汇成投资有限公司如何以创新路径重构产业生态
- 11:31东方药林第4期研修班圆满落幕 以学习型组织建设驱动企业高质量发展
- 17:2240万债权击穿10亿资产酒企?徽酒集团双轮酒业二次破产背后的博弈
- 19:40南京市创投集团合作子基金投资企业壁仞科技成功登陆港交所
- 15:12降价超75%!纳米晶体甲地孕酮医保落地,为肿瘤CACS患者送来诊疗福音
- 14:51纳米晶型甲地孕酮(美适亚)纳入2026医保,为CACS患者打破“厌食-死
- 10:57「山谷奇技,声乐造艺」 全新宝珀北京王府中環旗舰店盛大启航
- 10:57宝珀“大音乐家-四音四锤双旋律大小自鸣”超复杂功能腕表
- 18:57南京先进制造产业专项母基金子基金遴选结果揭晓
- 17:38东方药林:携手第四小组成员单位共推行业党建提质增效
- 12:32兑现“好房子”承诺:解读九牧的“场景答案”
- 20:05全美世界紧急捐赠100万港币 支援香港火灾善后重建
- 19:55皙之密护肤套装测评:秋冬干燥肌的水润守护
- 18:36市占率第一!九牧领跑中国“好房子”卫浴赛道
- 10:41智界潮改车共创大赛:从“用户共创”到“生态共生”的品牌文化构筑新范式
- 13:36南京市紫金生物医药产业投资基金合伙企业子基金遴选结果揭晓
- 14:40前沿技术赋能全域数据安全 安全防控可信数据空间 V1.0 版正式发布
- 14:38第一届濮院电竞节,今日启幕!
- 15:04助推产业链高质量发展·创投实录|清普生物:长效新药破“痛局”
- 11:38响应高质量发展,九牧为“好房子”拓路:从部委示范到全域智慧生态
- 10:28万亿市场税收变局 紫竹药业避孕药份额面临调整压力
- 17:18金海汇成投资有限公司创新路径与全球视野
- 14:22广州易萃享:立足羊城匠心,打造精准营养新标杆
- 14:05易萃享健康:数智驱动,让健康管理触手可及
- 10:11创投集团直投企业他山科技完成新一轮融资
- 09:36易萃享健康:全周期管理,筑起家庭健康屏障















