CVPR 2018:阿里提出应用 LocalizedGAN 进行半监督训练

阿里巴巴
城市大脑机器视觉研究组
编辑:江磊
【新智元导读】
GAN自诞生以来吸引了众多相关的研究,并在理论、算法和应用方面取得了很多重大的突破。我们试图从一个全新的几何角度,用
局部的
观点建立一种与之前经典GAN模型所采用的
整体方法
不同的理论和模型,并以此建立和半监督机器学习中Laplace-Beltrami算子的联系,使之不再局限于传统的图模型(Graph)方法,并在用少量标注样本训练深度学习模型上取得了优异的性能;同时我们还展示了如果用Localized GAN (LGAN)对给定图像在局部坐标系下进行编辑修改,从而获得具有不同角度、姿态和风格的新图像;我们还将进一步揭示如何从流型切向量独立性的角度来解释和解决GAN的mode collapse问题。
该工作由UCF齐国君教授领导的UCF MAPLE 实验室(Machine Perception and Learning)和阿里巴巴华先胜博士领导的城市大脑机器视觉研究组合作完成,并将发表在CVPR 2018上。

Guo-Jun Qi, LihengZhang, Hao Hu, Marzieh Edraki, Jingdong Wang and Xian-Sheng Hua. Global versusLocalized Generative Adversarial Nets, in CVPR 2018. [pdf]
GAN和基于图模型的半监督机器学习的关系
GAN除了用来生成数据,我们认为一个非常重要作用是:我们第一次有了一个比较理想的工具,可以用来表示和描述数据流型(manifold)。之前,如果我们想表示流型,一般是借助于一个图模型(Graph)。在图模型里,我们用节点表示数据点,用边表示数据直接的相似性。有了Graph,我们可以定量计算数据点上函数的变化。比如,在分类问题中,我们感兴趣的函数是分类函数,输出的是数据点的标签。有了基于Graph的流型,我们就可以建立一个分类模型:
它输出的分类标签在相似样本上具有最小的变化。
这个就是一种平滑性的假设,是基于图的半监督方法的核心假设。

尽管这种基于图的半监督方法取得了很大的成功,但是它的缺点也是很明显的。当数据点数量非常巨大的时候,构建这样一个Graph的代价会非常大。为了解决这个问题, Graph为我们提供了一个很好的基础。通过训练得到的生成器G(z),其实就是一个非常好的流型模型。这里z就是流型上的参数坐标,通过不断变化z,我们就可以在高维空间中划出一个流型结构。
有了这样一个流型和它的描述G,我们可以在数据流型上研究各种几何结构。比如切向量空间、曲率,进而去定义
在流型上,沿着各个切向量,函数会如何变化
等等。好了,这里GAN就和半监督学习联系起来了。以前我们是用Graph这种离散的结果去研究分类函数的变化,并通过最小化这种变化去得到平滑性假设。
现在,有了流型直接的参数化描述G(z),我们就能直接去刻画一个函数(比如分类问题中的分类器)在流型上的变化,进而去建立一个基于这种参数化流型的半监督分类理论,而非去借助基于图的流型模型。[page]分页标题[/page]
具体来说,半监督图流型中,我们常用到Laplacian矩阵来做训练;现在,有了参数化的流型后,我们就可以直接定义Laplace-Beltrami算子,从而实现半监督的训练。下面是基于这个方法在一些数据集上得到的结果。更多的结果可以参考我们的论文“Global versus Localized Generative Adversarial Networks“。

用全局还是局部坐标来研究GAN?
这里,有个比较精细的问题。通常的GAN模型,得到的是一个全局的参数话模型:我们只有一个z变量去参数化整个流型。事实上,在数学上,这种整体的参数化王是不存在的,比如我们无法用一个参数坐标去覆盖整个球面。这时我们往往要借助于通过若干个局部的坐标系去覆盖整个流型。
同时,使用局部坐标系的另一个更加实际的好处是,我们给定一个目标数据点x后,整体坐标系G(z)要求我们必须知道对应的一个参数坐标z;而使用局部坐标系后,我们就直接可以在x附近去建立一个局部坐标系G(x,z)去研究流型周围的几何结构,而不用去解一个逆问题去去它对应的z了。这个极大地方便了我们处理流型上不同数据点。

沿着这个思路,我们可以利用参数化的局部坐标和它表示的流型来研究一系列问题。
1.
比较理论的研究可以专注于,有了这些局部参数表示,如何去定义出一整套黎曼流型的数学结构,比如局部的曲率,黎曼度量,和如果沿着流型去算测地线和两个数据点之间的测地距离。
2. 从
应用的角度,给定了一个图像x,用局部表示G(x,z)可以对这个x在它的局部领域中做各种编辑操作或者控制图像的各种属性,
从而可以帮助我们生成想要的图像;比如不同角度的人脸、人体姿态、物体,甚至不同风格、表现不同情感的图像等等。这在安防、内容生成、虚拟现实等领域都会有广泛的应用前景。
从几何角度研究Mode collapse问题
当然,从几何和流型参数化的角度还可以给出对GAN更深入的理解,比如对
mode collapse
问题。在GAN的相关研究中,mode collapse是一个被广泛关注的问题。有很多相关的论文在从不同角度来研究和解决这个问题。
而基于Localized GAN所揭示的几何方法,我们可以从流型局部崩溃的角度来
解释和避免
GAN的modecollapse。具体来说,给定了一个z,当z发生变化的时候,对应的G(z)没有变化,那么在这个局部,GAN就发生了mode collapse,也就是不能产生不断连续变化的样本。这个现象从几何上来看,就是对应的流型在这个局部点处,沿着不同的切向量方向不再有变化。换言之,所有切向量不再彼此相互独立--某些切向量要么消失,要么相互之间变得线性相关,从而导致流型的维度在局部出现缺陷(dimensiondeficient)。
为了解决这个问题,最直接的是我们可以给流型的切向量加上一个正交约束(Orthonormalconstraint),从而避免这种局部的维度缺陷。下图是在CelebA 数据集上得到的结果。可以看到,通过对不同的切向量加上正交化的约束,我们可以在不同参数方向上成功地得到不同的变化。[page]分页标题[/page]

值得注意的是,尽管我们是从局部GAN的角度推导和实现了对切向量的正交化约束,
这个思路和方法同样适用于传统的整体GAN模型
。我们只需要在训练整体GAN模型的同时,在每个训练数据样本或者一个batch的子集上也加上这个约束来求取相应的下降梯度就同样可以训练整体GAN模型;这个方向可以引申出未来的相关工作
本文首发于微信公众号:新智元。文章内容属作者个人观点,不代表和讯网立场。投资者据此操作,风险请自担。

- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41

- 17:41南京先进制造产业专项母基金公布子基金遴选结果
- 17:20五力赋能 破浪笃行——东方药林第十一届初级晋级训练营圆满落幕
- 11:24未来更「耀」在一起 —— 2026康力燃梦启新年度盛典璀璨收官!
- 09:48南京市创投集团直投企业贝耐特完成数千万元融资
- 11:32金海汇成投资有限公司如何以创新路径重构产业生态
- 11:31东方药林第4期研修班圆满落幕 以学习型组织建设驱动企业高质量发展
- 17:2240万债权击穿10亿资产酒企?徽酒集团双轮酒业二次破产背后的博弈
- 19:40南京市创投集团合作子基金投资企业壁仞科技成功登陆港交所
- 15:12降价超75%!纳米晶体甲地孕酮医保落地,为肿瘤CACS患者送来诊疗福音
- 14:51纳米晶型甲地孕酮(美适亚)纳入2026医保,为CACS患者打破“厌食-死
- 10:57「山谷奇技,声乐造艺」 全新宝珀北京王府中環旗舰店盛大启航
- 10:57宝珀“大音乐家-四音四锤双旋律大小自鸣”超复杂功能腕表
- 18:57南京先进制造产业专项母基金子基金遴选结果揭晓
- 17:38东方药林:携手第四小组成员单位共推行业党建提质增效
- 12:32兑现“好房子”承诺:解读九牧的“场景答案”
- 20:05全美世界紧急捐赠100万港币 支援香港火灾善后重建
- 19:55皙之密护肤套装测评:秋冬干燥肌的水润守护
- 18:36市占率第一!九牧领跑中国“好房子”卫浴赛道
- 10:41智界潮改车共创大赛:从“用户共创”到“生态共生”的品牌文化构筑新范式
- 13:36南京市紫金生物医药产业投资基金合伙企业子基金遴选结果揭晓
- 14:40前沿技术赋能全域数据安全 安全防控可信数据空间 V1.0 版正式发布
- 14:38第一届濮院电竞节,今日启幕!
- 15:04助推产业链高质量发展·创投实录|清普生物:长效新药破“痛局”
- 11:38响应高质量发展,九牧为“好房子”拓路:从部委示范到全域智慧生态
- 10:28万亿市场税收变局 紫竹药业避孕药份额面临调整压力
- 17:18金海汇成投资有限公司创新路径与全球视野
- 14:22广州易萃享:立足羊城匠心,打造精准营养新标杆
- 14:05易萃享健康:数智驱动,让健康管理触手可及
- 10:11创投集团直投企业他山科技完成新一轮融资
- 09:36易萃享健康:全周期管理,筑起家庭健康屏障



