数据不完美 再智能的AI也会被“逼疯”
如果说人工智能是一辆飞奔的豪华跑车,那么数据就是提供强劲动力的燃料,这种能源不仅要充沛,还要确保质量。否则,就会产生瑕疵影响跑车的速度和行进轨道,甚至会引发AI的“生命危险”。
日常生活中,数据的类型大体可分为结构化数据、非结构化数据、半结构化数据。一个数据从产生到落地要经过收集、传输、分析、检索、挖掘等阶段。分析让大量的数据有了价值,机器要学会像人一样学习、思考、推理、交流,进而与应用场景相结合,从规律中预测未来。不过,要让机器像人一样去“看”数据,恐怕穷尽一生也无法分析完。
举个例子,计算机在进行视觉训练时,如果用1万把椅子的照片让其学习,人的固有思维会先记住椅子外观的关键组成部分,比如椅背和椅子腿。而对于机器学习来说,它们或许会找到一些新的特征,并对这些特征进行归纳来识别出一把新的椅子。这一过程中,需要有海量、不同的椅子照片供给计算机去学习。
如果深究技术层面,数据分析所用的map-reduce算法可将数据分解为多个部分,利用hadoop集群对每一部分的数据进行分析,之后将效果汇总经过多轮计算筛选出结果。解析过程中,对每轮结果的优化又会引入Spark这种快速通用的计算引擎。如果强调实时数据处理,也会用到storm等计算框架。
然而,就像柴油注入汽油车会出问题,也不是任何数据对人工智能都有积极作用,不少案例已经可以证明这一点。例如,有些聊天机器人在网络上学习了负面评论,就会变得“尖酸刻薄”甚至引发了种族歧视问题。可见,数据的开源性固然重要,但如何找到有质量的数据对AI发展有着决定性的影响,尤其是在受到高度监管的行业。
人工智能的负面影响不仅在于学习偏差,还可能被黑客利用成为新型网络攻击的武器,甚至出现伦理问题。如果数据本身是有瑕疵的,那么不管是有意还是无意,人工智能系统都会基于这样的数据进行训练,带来的后果可想而知。举个例子,一个信用卡审核系统要是用有偏差的数据构建解决方案,就会对某一类的申请人给初带有偏见性的结论。往坏处想,这或许就是马斯克眼中“AI毁灭人类”的开端。
如今,小到Alexa、Siri这些虚拟机器人对人类语言理解的错误判断,大到自动驾驶在道路测试时发生的交通事故,都在印证着人工智能在利用数据进行训练时仍有相当大的上升空间。也就是说,人们除了要在数据合规的基础上,开放更多的数据源,还要借助区块链等新技术或手段为这些数据建立完善的审核机制。
互联网时代的快节奏让数据也跑在快车道上,松懈不得。以城市交通治理为例,每天在城市道路上都在发生着堵车或者事故,如果做不到对数据的实时分析就难以立刻找到有效的疏通办法,而在上下班高峰期时的交通堵塞往往因为某一个信号灯故障就会引发。
再比如,工业互联网时代产生的数据量比传统信息化要多数千倍甚至数万倍,并且是实时采集、高频度、高密度的,动态数据模型随时可变,甚至良品率的细微变化都会带来数据模型重建。这样一来,如果做不到工业数据实时更新,智能制造就无从谈起。
总的来说,即使人工智能有一天真的成为“类人”,仍然离不开人类将其引导上一条正路。无论是伦理还是情感问题,都要基于数据进行判断,而要是数据的质量无法保障,再智能的AI都会被“逼疯”。

- AMD助力微软Windows 11 为用户带来强大、可靠的计算能力2021-10-09 16:20
- 游戏玩家为之疯狂!Chinajoy2021 AMD展台那些火爆的瞬间2021-08-02 15:39
- 全场最佳 AMD Chinajoy2021展台圆满收官2021-08-02 15:38
- AMD 锐龙5000G系列处理器正式亮相Chinajoy20212021-08-02 11:50
- 极速制胜 制霸游戏 AMD携多款游戏神器扬威Chinajoy2021-08-02 11:44
- 央视《新闻联播》头条聚焦铁建重工,聚力攻克“卡脖子”技术难题2021-03-22 11:08
- 刚刚!我又上央视新闻联播头条了!2021-03-22 11:04
- 中国电科(3月1日-3月7日)要闻回顾 | 资讯轻阅读2021-03-22 10:47
- 我国将建第一个国家公园:为何是三江源2021-03-22 10:43
- 美国硅谷上演“大逃亡”:郊区成科技精英避难所2021-03-22 10:41

- 11:24未来更「耀」在一起 —— 2026康力燃梦启新年度盛典璀璨收官!
- 09:48南京市创投集团直投企业贝耐特完成数千万元融资
- 11:32金海汇成投资有限公司如何以创新路径重构产业生态
- 11:31东方药林第4期研修班圆满落幕 以学习型组织建设驱动企业高质量发展
- 17:2240万债权击穿10亿资产酒企?徽酒集团双轮酒业二次破产背后的博弈
- 19:40南京市创投集团合作子基金投资企业壁仞科技成功登陆港交所
- 15:12降价超75%!纳米晶体甲地孕酮医保落地,为肿瘤CACS患者送来诊疗福音
- 14:51纳米晶型甲地孕酮(美适亚)纳入2026医保,为CACS患者打破“厌食-死
- 10:57「山谷奇技,声乐造艺」 全新宝珀北京王府中環旗舰店盛大启航
- 10:57宝珀“大音乐家-四音四锤双旋律大小自鸣”超复杂功能腕表
- 18:57南京先进制造产业专项母基金子基金遴选结果揭晓
- 17:38东方药林:携手第四小组成员单位共推行业党建提质增效
- 12:32兑现“好房子”承诺:解读九牧的“场景答案”
- 20:05全美世界紧急捐赠100万港币 支援香港火灾善后重建
- 19:55皙之密护肤套装测评:秋冬干燥肌的水润守护
- 18:36市占率第一!九牧领跑中国“好房子”卫浴赛道
- 10:41智界潮改车共创大赛:从“用户共创”到“生态共生”的品牌文化构筑新范式
- 13:36南京市紫金生物医药产业投资基金合伙企业子基金遴选结果揭晓
- 14:40前沿技术赋能全域数据安全 安全防控可信数据空间 V1.0 版正式发布
- 14:38第一届濮院电竞节,今日启幕!
- 15:04助推产业链高质量发展·创投实录|清普生物:长效新药破“痛局”
- 11:38响应高质量发展,九牧为“好房子”拓路:从部委示范到全域智慧生态
- 10:28万亿市场税收变局 紫竹药业避孕药份额面临调整压力
- 17:18金海汇成投资有限公司创新路径与全球视野
- 14:22广州易萃享:立足羊城匠心,打造精准营养新标杆
- 14:05易萃享健康:数智驱动,让健康管理触手可及
- 10:11创投集团直投企业他山科技完成新一轮融资
- 09:36易萃享健康:全周期管理,筑起家庭健康屏障
- 08:38易萃享:1000 日夜匠心,精准营养走进万家
- 18:55广东康力医药有限公司:荣誉加身,彰显标杆实力



